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ABSTRACT The concentration dependence of single-chain equilibrium properties such as the radius of gyration 
RG, the hydrodynamic radius RH, and the static structure factor Ss(q) of a labeled chain in a dilute solution 
is due, in the first order in concentration, to the deformation of the labeled chain, both in size and in shape, 
when it experiences a binary encounter. We calculate the concentration correction in RG, RH, and Ss(q) using 
two-chain Monte Carlo calculations of Olaj et al. to quantify the intramolecular deformations in a pair. The 
magnitude of the correction turns out to be less than a few percent. The concentration dependence of the 
static structure factor S(q;C), including the interference effects, is also calculated using the pair distribution 
function obtained in the above Monte Carlo calculations, without resorting to the single-contact approximation 
for the excluded volume interaction between two chains. The results for S1(q;C) are compared with the Zimm 
plot. The initial slope of S1(q;C) as a function of q2 in the good solvent limit is found to depend on concentration 
appreciably while it is known to be independent of concentration in the single-contact approximation. 

Introduction 
The main purpose of this paper is to investigate the 

concentration dependence of single-chain equilibrium 
properties in the lowest order in concentration. Specifi- 
cally, we consider a labeled chain in the presence of other 
identical chains in a dilute solution. A single-chain 
property is defined in general as a function Z ( S ) ,  which 
depends on the positions S = (SI, S2, ..., SN] of the mo- 
nomers of the labeled chain relative to its center of mass. 
Other internal variables such as the bond vectors b = (bl, 
b2, ..., bN-l) could also be used to specify 2. The equilib- 
rium average of Z is defined as 

( Z ) , ( S ; C )  = I d s  z ( S ) + ( S ; C )  (1) 

where + ( S ; C )  is the equilibrium monomer distribution of 
the labeled chain in the presence of others at a specific 
concentration C (C being the number of molecules per unit 
volume). The concentration dependence of +(S;C) ,  in the 
lowest order in polymer concentration, can be displayed 
as1 

+ ( S ; C )  = + ( S )  + C S d 3 R  G(R)[+(SIR) - +(S)l (2) 

where +(S) and +(SIR) denote, respectively, the intramo- 
lecular distribution of the labeled chain when it is isolated 
and when it is forming a pair with a center-of-mass sepa- 
ration distance R. Here, G(R)  is the pair distribution 
function of polymers in the infinite dilution limit and is 
related to the intermolecular interaction potential U(R) 
by 

G(R) = exp[-U(R)/kd'l (3) 

kBT being the temperature in energy units. 

of (2) in (1) as 
The equilibrium average of Z can be written by the use 

G ) $ ( S ; C )  = G ) , ( S )  + CSd3R G(R)[(Z),(S,R) - (Z),(S)I 

(4) 

In many cases, the single-chain property can be ex- 
which is the starting equation in the present work. 

pressed as a sum of pairs 
N 

ij=1 
Z ( S )  = E Z ( S i j )  ( 5 )  

where Sij = Si - Sj is the vector distance of two monomers 
on the labeled chain. Hence, we only need the distribu- 
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tions qij(S) and Gij(SIR) of S = Si,  in an isolated chain and 
in a chain forming a pair. 

The conditional distribution I,~~~(SIR) takes into account 
the deformation of the labeled chain both in shape and in 
size when it is in a pair. Olaj et al.2-4 have investigated 
deformations of two identical chains as a function of their 
center-of-mass separation distance under both 8 and good 
solvent conditions with two-chain Monte Carlo calcula- 
tions. In particular, they obtained the variations of the 
radius of gyration and the end-to-end distance along 
parallel and perpendicular directions to the pair axis. 

In order to make use of this information, we represent 
the distribution of S as a product of two Gaussian dis- 
tributions for its parallel and transverse components to the 
axis of the pair: 

(6) 
where c0s-l y is the angle between S and the axis of the 
pair. The quantity (Sit) denotes the equilibrium average 
of ISitl for a single isolated chain. The quantities e ,  2 ( R )  
and eL2(R) account for the deformation in the shape of the 
labeled chain in a pair when the separation distance is R. 
They are defined as the mean squares of the parallel and 
perpendicular components of the end-to-end vector RN of 
the chain, normalized such that c l 1 2 ( ~ )  = el2( , )  = 1. The 
assumption that tIl2(R) and cL2(R) are independent of i and 
j implies a proportional deformation of all chain sections. 
The variation of ell2@), eL2(R) ,  and G ( R )  with the sepa- 
ration distance R has been obtained by Olaj et al.4 nu- 
merically. 

We have investigated explicitly the concentration de- 
pendence of the radius of gyration RG, the hydrodynamic 
radius RH, and the static structure factor Ss(q;C) of a 
labeled chain as an application of the above formalism. In 
the case of the concentration dependence of RG, our general 
formalism in eq 4 reproduces the method used by Olaj et 

In addition to the self part of the static structure factor 
S(q;C), we have also obtained the interference term S,(q;C), 
which involves the joint intramolecular segment distribu- 
tion +(S,,S21R) of two chains forming a pair with a sepa- 
ration distance R. By approximating this function as a 
product +(S11R)+(S21R), we have obtained an expression 
for S(q;C) in the lowest order in concentration and for all 

a1.4 
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the good solvent limit turns out to be less than a few 
percent. However, it is still interesting to find that the 
radius of gyration tends to increase with concentration 
under 8 conditions, whereas it decreases in the good sol- 
vent limit. The physical origin of this behavior lies in that, 
according to the Monte Carlo calculations,4 M ( X )  in (11) 
is positive for small separation distances and negative for 
large distances in the good solvent limit. Since distant 
pairwise encounters are more numerous as indicated by 
the weighting factor X 2 G ( X ) ,  the decrease in the size of 
the molecules predominates, resulting in a decrease of the 
radius of gyration with concentration in good solvents. In 
the case of 8 solvents, @ ( X )  is again positive for small 
distances but oscillates between negative and positive 
values a few times when the separation distance is in- 
creased. Although there is a possibility that these oscil- 
lations may be an artifact due to some computational 
reasons, there is no physical reason, to our knowledge, to 
reject them as such. Furthermore, the pair distribution 
function G ( X )  is larger than in the good solvent case for 
short distances. The net result is that KG is slightly 
positive under 8 conditions. The accuracy of the numerical 
estimates of KG does not seem to be reliable because of the 
statistical uncertainty in t l12(R)  and tL2(R)  a t  large sepa- 
ration distances, where the weighting factor X 2 G ( X )  is 
more important than at  shorter distances. The large 
discrepancy between 4-way and 5-way cubic lattice results 
under 8 conditions may be an indication of this uncer- 
tainty. 

The decrease of RG2(C) with increasing concentration 
in good solvents is in qualitative agreement with ref 6 and 
with the results obtained by Sanchez and L ~ h s e , ~  who 
expressed KG as KG - -A2w. We should, however, 
mention that the positive (and small) slope KG at  the 8 
temperature may be due to the fact that Olaj’s 8 tem- 
perature (with 50-mers) is below the Flory temperature. 
In the former case the 8 condition is defined as the point 
where the iW2 power law for RG is obeyed. A2 = 0 defines 
the 8 temperature in the long-chain limit. 

First Cumulant and Hydrodynamic Radius 

defined as 
Another single-chain property is the first cumulant, 

q values in terms of G(R) ,  t l l ( R ) ,  and t L ( R ) .  This ap- 
proximation differs from the single-contact approximation 
used by Zimm5 originally to handle the excluded volume 
interaction between two chains. The variation of S(q;C) 
and S-’(q;C) as function of qRG is plotted for a few values 
of concentration and compared to the results obtained with 
the single-contact approximation. 

Radius of Gyration 
The choice of Z as 

in (4) gives the concentration dependence of the radius of 
gyration (or rather of its square) of a labeled chain. The 
result can be displayed as 

(7) 
where Cv is the polymer concentration as a volume frac- 
tion; i.e., Cv = (4a/3)RG3C. RG is the radius of gyration 
for an isolated chain, and 

RG2(C) = RG2(1 + KGCV) 

In (8), X = R/RG and ARG2(X) = RG2(X) - RG2, where 
RG2(X) denotes the radius of gyration of the labeled chain 
in a pair with a separation distance R and satisfies RG(m) 
= RG. Equation 8 was first obtained by Olaj et al. (eq 5 
of ref 4). The interesting feature of (7) and (8) is that the 
functions G ( X )  and ARG2(X)/RG2 needed to calculate KG 
are also available numerically from two-chain Monte Carlo 
computations on  lattice^.^^^ Using the numerical results 
reported by Olaj et al.,4 we have calculated KG = 0.0192 
(4-way lattice) and KG = 0.0356 (5-way lattice) under 8 
conditions and KG = -0.0862 (4-way lattice) and KG = 
-0.0930 (5-way lattice) in the good solvent limit. Equations 
7 and 8 are identical with those given by Olaj et al.? except 
for the definition of the volume fraction. 

One could derive an expression for the quantity RG2(R) 
by performing the ensemble average (Z)+(slR) in (4) using 
the modeled distribution function +ij(SIR) in (6): 

where 

which can be reduced to 

t2(R)  = ( 2 t L 2  + El12)/3 (10) 

Substitution of (10) into (4) leads to the following ex- 
pression for KG in terms of the deformation of the end- 
to-end distance, viz., A@(R) = t2(R)  - 1: 

KG = 3JmdX X 2 G ( X ) A P ( X )  (11) 

Using the values of A@(X)  also calculated by Olaj et 
one finds KG = 0.0167 (4-way lattice) and KG = 0.0377 
(5-way lattice) under 8 conditions and KG = -0.1100 (4-way 
lattice) and KG = -0.1269 (5-way lattice) for the good 
solvent limit. The agreement between these values and 
those given above provides a check of the validity of the 
form I)~~(SIR) introduced in (6). 

The significance of these results is more qualitative than 
quantitative because the concentration correction even in 

d 
Qs(q;C) = -1im - In Ss(q,t;C) 

t+ dt  
where Ss(q,t;C) is the intermediate scattering function for 
the labeled chain. In the small-q limit, it reduces to 
Qs(q-+O;C) = q2Dos(C),  where 

DOS(C) = G ) $ ( S ; C )  (13) 

with 

The Oseen tensor appears as an averaged quantity (over 
angles) because + ( S ; C )  is spherically symmetric even in 
the presence of other chains. The quantity Dos(C) can be 
interpreted as the concentration-dependent short-time 
self-diffusion coefficient of a chain. Indeed, in the zero 
concentration limit, the translational diffusion coefficient 
D of a polymer is related to the short-time diffusion 
coefficient Do by D = Do - D,, where D, is a correction term 
accounting for the coupling between internal modes and 
diffusion of the center of mass.811o The magnitude of D1 
relative to Do for a Gaussian chain with preaveraged Oseen 
tensor is 1.68%. At finite concentrations, the self-diffusion 
and mutual (or cooperative) diffusion coefficients deviate 
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from each other due to the difference in their concentration 
dependences. In this paper, we focus our attention on the 
concentration dependence of Dm (short-time self-diffusion 
coefficient) only and drop the subscript zero for notational 
convenience. The concentration dependence of the mutual 
diffusion coefficient was discussed elsewhere.lJl Since a 
working definition of the hydrodynamic radius RH of a 
chain is usually taken as 
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where X = R/RG is a normalized intermolecular distance 
and Cv is measured in volume fraction. If we define Cv 
using a hydrodynamic volume as Cv = (4x/3)RH3C, KDsG 
is replaced by KDsH = KDsG(R~/R~)3.  We have calculated 
both KEG and KDsH using the two-chain Monte Carlo data 
for G(X), cl12(X), and tL2(X) for 4-way and 5-way cubic 
lattices under 8 and good solvent conditions. We have also 
used RH/RG = 0.665 under 8 conditions13 and RH/RG = 
0.537 for good solvent  condition^'^ to convert KEG to KmH. 

4-way 5-way 
0 good 0 good 

K ~ s z  -0.0025 0.0722 -0.0154 0.0794 
K,s -0.0086 0.4663 -0.0525 0.5129 

If deviations from spherical deformation are such that 
E , ~ ~ E ~ ~ ~ ,  a simpler and physically more interpretable result 
is obtained from (19) by expanding tan-' X and tanh-' X 
for small arguments 

we may also interpret Ds(C) as Ds(C) - RH-l(C) for large 
N and investigate the concentration dependence of the 
hydrodynamic radius using (13). 

Substitution of (14) into (4) yields 

1 + CJd3R G(R) [ Ds(Rd, "'1 ] (15) 

where 

and 

Here, Ds corresponds to Kirkwood's approximation for the 
translational diffusion coefficient12 in the zero concentra- 
tion limit. The quantity Ds(R) can be interpreted as the 
short-time translational diffusion coefficient of the center 
of mass of the labeled chain when it forms a pair with 
another molecule a t  a separation distance R. It can be 
calculated numerically as a function of R using the two- 
chain Monte Carlo results given by Olaj e t  a1.,4 similarly 
to the calculation of RG2(R). To our knowledge, such 
calculations have not yet been reported in the literature. 
Therefore, we proceed by performing the averages over the 
modeled distribution function $,,.(SIR) in (6), and find 

where 

Substitution of (18) into Ds and Ds(R) leads to 

Expressing the concentration dependence of Ds(C) as 

Ds(C) = Ds(1 + KDS~CV)  

we obtain the coefficient KDsG 

KDsG = [ 1 - %]3S,-dX X2G(X)[h(X) - 11 (21) 

Introducing AlP = (AHl12 + 2AHL2)/3 given in terms of 
the perturbations Mil2 = t I l2 - 1 and AHL2 = t L 2  - 1 that 
are calculated by Olaj et al.,4 one obtains 

KDsG = -!( 1 - =)JmdX X 2 G ( X ) H ( X )  (23) 
2 tNDs 

AZP is a measure of the overall change in the end-to-end 
distance of the labeled chain 8s a function of the separation 
distance. This simplified result provides a cruder estimate 
for KDsG than the one presented above but lends itself 
better to physical interpretation than the original form in 
(21) (see discussion at  the end of the previous section). 

Equation 23 was used by one of us1 to calculate Ds(C) 
by assuming that $(SIR) is an isotropic Gaussian chain 
with an R-dependent radius of gyration. This assumption 
is tantamount to letting tl12(R) = cL2(R) = t2(R) in (6) for 
all separation distances, with the implication that the 
deformation of the labeled chain is spherical. It leads to 
h(R) = 1/c(R) in (19), which is equivalent to assuming that 
Ds(R)/Ds = RN/RN(R) for all R (RN being the end-to-end 
distance). In ref 1, KDS was calculated with t2(R) = RG2 
(R)/RG2 and by ignoring the decrease in size a t  large sep- 
aration distance. Furthermore, G(R) was obtained from 
exp(-U(R)/kBT) with a uniform-sphere model for the in- 
termolecular interaction potential U(R). At the 8 tem- 
perature, U(R) = 0 (G(R) = 1) according to this model, so 
that i t  puts more weight on close encounters than the 
Monte Carlo value of G(R) used in the present work. This 
and the neglect of the decrease in size at  large distances 
led to KDsH = -1.063 under 8 conditions and KDsH = 
-0.187 for the good solvent case. Although it predicted the 
correct trend from 0 to good solvent, it represents a cruder 
estimation of the numerical value of KDsH than the cal- 
culation presented here. The latter includes a more de- 
tailed description of binary encounters and makes use of 
the Monte Carlo results for both U(R)/KBT and size 
changes in parallel and perpendicular directions consist- 
ently. 

Equation 21 indicates that, because of the first bracket, 
the short-time self-diffusion coefficient becomes inde- 
pendent of concentration in the Rouse limit. We also 
notice in (21) that KDS vanishes when there is no defor- 
mation in the monomer distribution in a molecule during 
binary encounters, e.g., hard spheres. However, the 
long-time self-diffusion coefficient can still be concentra- 
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We need this two-molecule distribution function only in 
the infinite dilution limit because SI is already proportional 
to Np/ V. Separating the pair distribution function $(R12) 
= G(R12)/VL as 

tion dependent15 through the correction term D1 which has 
not been considered in this paper. 

Before leaving this section, we should mention that 
several works have shown that for finite-length chains a t  
infinite dilution, the 8 dimensions are slightly larger than 
idea1.1618 

Single-Chain Static Structure Factor 

factor of the labeled chain is obtained by choosing 
The concentration dependence of the static structure 

i N  

in (4) as 

Ss(q;C) = Ss(q) + C S d 3 R  G(R)[S,,(q(R) - Ss(q)1 (24) 

where 

(25) 
l N  

Wij=1 

1 N  

Ss(4) = - C (exp(iqSij))$(s) 

and 

(26) 

The quantities Ss(q) and S,,(qlR) are, respectively, the 
static structure factors of an isolated molecule and of a 
molecule in an isolated pair with a separation distance R. 
S,,(qlR) is readily available for Gaussian chains, as we 
assumed for I+!,~(SIR) in (6), in the form of a Debye function 
with an R-dependent argument: 

Sps(qIR) = s i z l ( e x p ( i q S i j )  ) + ( S I R )  

where X = R/RG and 

K'(X) = K ~ ~ , ~ ( X )  + K ~ C Y ~ [ E ~ , ~ ( X )  - eL2(X)] (27b) 

with K = qRG and c0s-l CY the angle between K and the 
separation distance X. Ss(q) is the limit of S$(K(X) as X - a. Combining these results, one finds in terms of 
volume fraction Cv 

Ss(K;C) = S,cj(K) + CvT(K) (284 
where 

3 
47 T(K) = - j d 3 X  G(X)[S,,(KIX) - SS(K)] (28b) 

The X integration in (28b) is performed numerically by 
using the Monte Carlo results for c L 2 ( X ) ,  q2(X), and G(X) .  
These results are presented together with those for the 
interference term to be discussed next. 

Static Structure Factor 
Although it is not a single-chain property, we also con- 

sider the interference term in the static structure factor 
S(q;C) = Ss(q;C) + S1(q;C) 

in order to investigate the concentration dependence of 
S(q;C) as a whole. By definition 

where N p  is the number of chains in the system of volume 
V, Rlz is the vector distance between the centers of mass 
of the molecules in a pair, Sli2j = Sli - S2j, and 
+(Sl,Sz,R12;C) is the concentration-dependent joint dis- 
tribution function of the intramolecular coordinates S1 and 
S2 and the centers of mass of the molecules in the pair. 

where $c(Sl,S21R12) is the conditional joint intramolecular 
distribution function of molecules in an isolated pair with 
a separation distance R12, we can express SI(q;C) as 

SI(q;C) = C S d 3 R  G(R)eiqRSPd(qlR) (30) 

where 
1 N  

P i j = 1  
Sd(qIR) = - (exP(iqsli2j) ) J . ~ ( s ~ , s ~ ~ R )  (31) 

Since $c(Sl,SzIR) approaches the product $(S1)$(S2) of 
single-chain monomer distributions $(Sl) and $ ( S z )  as R - m ,  (31) reduces for large separation distances to 

Spd(qlR) - b M ( S ) I 2  (32) 

where p M ( q )  is the characteristic function of the monomer 
distribution function p M ( S )  = (l/N)Czl(G(S - Si)) about 
the center of mass. 

SI(q;C) = C S d 3 R  [G(R) - l]eiqRSpd(qlR) + 
SI(q;C) can be cast into the following form: 

C 1 d 3 R  eiqR[spd(qlR) - lP~(4)1~]  + clPd4)12s(S) (33) 

The last term is the usual central peak that vanishes for 
q # 0 and will be dropped henceforth. 

In order to calculate Spd(qlR) in (33) explicitly, we in- 
troduce the separability assumption, which is the only 
assumption, to proceed further 

+c(Si,S2(R) N $(SiIR)IL(S2IR) (34) 

where $(SIR) is the R-dependent intramolecular distri- 
bution function defined earlier in (6). Furthermore, as- 
suming (as is usually done) that the monomer density 
distribution about the center of mass is Gaussian, we ob- 
tain S,d(qlR) in dimensionless variables as 

Spd(KIX) exp[-K2(X)/3] (35) 

where K ~ ( X )  is defined in (27b). The assumption of a 
Gaussian monomer distribution about the center of mass 
is not essential. One may use the sum of the distributions 
of the individual monorner~ '~ instead, without any sig- 
nificant numerical improvement. Substitution of (35) into 
(33) for q # 0 yields 

SI(K;C) = -CvF(K) 

where 
3 

F(K) = - 1 d 3 X  47r [I - 

we have calculated the static structure factor numerically 
as function of K for various values of concentration. Al- 
though we do not have to commit ourselves to a particular 
shape for the single-chain static structure factor in the 
theoretical formulation, we use a Debye function to gen- 
erate our plots even in the good solvent limit. The re- 
normalization calculations reported by Ohta et a1.20 indi- 
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Figure 1. S(q;C) vs. qRG for various values of concentration Cv. 
Solid curves represent eq 37; dashed curves represent eq 38. 
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Figure 3. S(q;C) vs. qRG for various values of concentration CV 
Solid curves use the inverse of eq 39; dashed curves use the inverse 
of eq 40. 
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Figure 2. S1(q;C)  vs. (qRC)* for various values of concentration 
Cv. Solid curves represent eq 39; dashed curves represent eq 40. 

cate that the Debye form with swollen RG reproduces the 
calculated single-chain static structure factor for athermal 
chains up to q2RG2 N 60 very closely. Other models can 
be used, such as the completely swollen chain model 
(PeterlinZ1 and Akcasu and BenmounaZ2 among others) or 
models based on the blob hypothesis, if the single-chain 
static structure factor is needed as a function of temper- 
ature. The results are presented in Figure 1. The dashed 
curves are calculated from Zimm's5 result based on the 
single-contact approximation, viz. 

(38) 

where Az is the second virial coefficient, M is the molecular 
weight, and CM is the mass concentration of polymers. We 
have adjusted the value of Az so that both models take the 
same value S(q;C) at  q = 0. We point out that single-chain 
properties in general and Ss(q;C) in particular become 
independent of concentration in the single-contact ap- 
proximation because this approximation leads to + ( S ; C )  
= $(S) in the lowest order in concentration. 

S(K;C) = Ss(K) - 2 A & f C ~ s s ~ ( K )  

Figure 2 represents S-'(q;C) calculated from 

S-'(K;CV) = Ss-l(~;Cv) + CVF(K)SS-'(K;CV) (39) 
in solid curves and from 

S-'(K;C) = Ss-l(K) + ~ A z M C M  (40) 

in dashed curves. It was shown by Zimm5 in the single- 
contact approximation for the intermolecular interaction 

I I I 

0.00 0 IO 0 20 0 30  0.40 

C" 

Figure 4. S-'(q;C) vs. Cv for various values of qR, using eq 39 
and 40. 

that expression 39 is a better approximation for S ( K ; C ~ )  
at  higher concentrations than its reciprocal, expression 37. 
The important difference between (39) and (40) is that the 
initial slope of S-'(K;C~) vs. K~ is independent of concen- 
tration in Zimm's formula whereas it slightly decreases 
with concentration in (39). One finds, for example, that  
the change in the initial slope as a function of K~ is about 
25% in the good solvent limit when the concentration is 
Cv = 0.25. This effect appears to be large enough to affect 
the accuracy of the extraction of the radius of gyration 
from S(q;C) data in good solvents, especially in the case 
of large radius of gyration and high concentration. 

In Figure 3 we plot S(q;Cv) using the inverse of eq 39 
and 40 that involve the reciprocal approximation. When 
the concentration is increased, these curves show less 
structure than those obtained by using eq 37 and 38. 
Finally, using (39) and (40), we plot S - ' ( K ; C ~ )  vs. Cv for 
different values of qRG in Figure 4. One sees that the 
deviation becomes appreciable for large values of qRG. 

Discussion 
It is shown that single-chain equilibrium properties such 

as the radius of gyration, the hydrodynamic radius, and 
the single-chain static structure factor depend on con- 
centration in dilute solutions as a result of the deformation, 
both in size and in shape, of two molecules experiencing 
a binary encounter. The magnitude of this dependence, 
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however, is smaller than a few percent in all cases, so it 
is not expected to be of any experimental significance. In 
the single-contact approximation, this concentration de- 
pendence disappears because the intramolecular segment 
distributions of the molecules in a pair are not perturbed 
in this approximation. 

The numerical calculations are based on the two-chain 
Monte Carlo results of Olaj and c o - ~ o r k e r s ~ - ~  for G(R) ,  
t , , (R),  and c,(R) obtained by considering a chain with 50 
steps on a cubic lattice, under both 0 and good solvent 
conditions. Therefore, the accuracy of the numerical es- 
timates of the initial slopes of the single-chain properties 
as a function of concentration presented in this paper is 
restricted by the statistical accuracy of the computer re- 
sults, especially at large separation distances. Furthermore, 
it is assumed that the shape of the functions G(R),  q ( R ) ,  
and c,(R) when they are expressed in terms of the nor- 
malized separation distance RIRG is independent of mo- 
lecular weight. I t  is desirable to check the validity of this 
assumption by repeating the two-chain Monte Carlo cal- 
culations with longer chains. As an independent test, we 
have calculated the interpenetration function 

using the computer data for G ( X )  and found # = 0.29, 
which is in fair agreement with e ~ p e r i m e n t a l ’ ~ * ~ ~  as well 
as t h e ~ r e t i c a l ~ ~  values for the limit of the interpenetration 
function as the excluded volume parameter z goes to in- 
finity. The discrepancy is perhaps due to the fact that the 
chain length is not sufficiently long (50-mers) and hence 
one is not quite in the large-z region. Extension of two- 
chain Monte Carlo calculations from 0 and good solvent 
conditions to intermediate solvents and parametrization 
of the pair distribution G(R) at different temperatures are 
also desirable in the study of concentration dependence 
of static and dynamic chain properties in dilute solutions 
in general. 

The concentration dependence of the static structure 
factor has also been studied by using two-chain Monte 
Carlo results without resorting to the single-contact ap- 
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proximation, and it was found that the shape of S’(q;C)  
as a function of q2 changes slightly with concentration, 
whereas it is independent in the conventional Zimm theory. 
The change seems to be large enough in the good solvent 
limit to be observed experimentally. 
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ABSTRACT: Surface pressure (*)-surface concentration (r) isotherms of poly(methy1 acrylate) monolayers 
a t  the air-water interface were measured as functions of molecular weight and temperature in the vicinity 
of the 8 temperature. The crossover r* between the dilute and semidilute regimes and the crossover r** 
between the semidilute and concentrated regimes were determined. The T,  r*, r**, and second virial coefficient 
A2 data were compared with the theoretical predictions of Daoud and Jannink based on scaling concepts in 
two-dimensional space. The temperature dependences of these measured quantities were in good agreement 
with the theory, whereas the molecular weight dependence of these values did not agree with the theoretical 
calculations of Daoud and Jannink. A temperatureconcentration diagram in two-dimensional space was drawn 
with the experimental results. 

The scaling theories proposed by de Gennesl and the 
recently developed techniques of small-angle neutron 
scattering2 and quasi-elastic light scattering3 are making 
clear the thermodynamic, static, and dynamic properties 
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of polymer solutions in the semidilute and concentrated 
(gel) regimes. 

Daoud and Jannink4 presented a temperature-concen- 
tration diagram of polymer solutions based on de Gennes’ 
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